
International Journal of Computer Science & Emerging Technologies (IJCSET) 83

Volume 1 Issue 2, August 2010

A Migrating Parallel Exponential
Crawling Approach to Search Engine

Jitendra Kumar Seth
Assistant Professor, Department of Information
Technology, Ajay Kumar Garg Engg. College, Ghaziabad,
India, mrjkseth@yahoo.co.in

Abstract. Search engines have become important tools for Web

navigation. In order to provide powerful search facilities, search

engines maintain comprehensive indices of documents available

on the Web. The creation and maintenance of Web indices is done

by Web crawlers, which recursively traverse and download Web

pages on behalf of search engines. Analysis of the collected

information is performed after the data has been downloaded. In

this research, we propose an alternative, more efficient approach to

building parallel Web crawlers based on mobile crawlers. Our

proposed crawlers are transferred to the remote machines where

they downloads the web pages and make some other processing in

order to filter out any unwanted data locally before transferring it

back to the search engine(central machine). This reduces network

load and speeds up the indexing phase inside the search engine. In

our approach design and implementation of web crawler that can

grow parallelism to the desired depth and can download the web

pages that can grow exponentially in size is being proposed. The

parallel crawler first filters and then compresses the downloaded

web pages locally before transmitting it to the central machine.

Thus the crawlers save the bandwidth of network and take the full

advantage of parallel crawling for downloading and speedup the

process.

Keywords: Quality of index, seaach engine, web crawlers, parallel
crawlers, mobile crawlers, communication bandwidth, Crawl
machine, CDB, Crawler Application, filter, and compress.

1. Introduction

The World Wide Web ("WWW" or simply the "Web") is a

global information medium which users can read and write

via computers connected to the Internet. It is not easy to find

your web pages among 1 billion web pages currently

published online. The size of the Web has doubled in less

than two years, and this growth rate is projected to continue

for the next two years. In the context of Internet for useful

information, a search engine is a program, or series of

programs that, scan and index the web pages on the internet.

A crawler is a program that retrieves and stores pages from

the Web, commonly for a Web search engine. A crawler often

has to download hundreds of millions of pages in a short

period of time and has to constantly monitor and refresh the

downloaded pages. Roughly, a crawler starts off

Ashutosh Dixit
Senior Lecturer in Computer Science Department,
YMCA, Faridabad, Hariyana, India
dixit_ashutosh@rediffmail.com

by placing an initial set of URLs, in a queue, where all
URLs to be retrieved are kept and prioritized. From this
queue, the crawler gets a URL (in some order), downloads
the page, extracts any URLs in the downloaded page, and
puts the new URLs in the queue. This process is repeated.
Collected pages are later used for other applications, such as
a Web search engine.

Given this explosive growth, we see the following specific
problems with the way current search engines index the
Web:

Scaling: The concept of “download-first-and-index-later”
will likely not scale given the limitations in the
infrastructure and projected growth rate of the Web. Using
the estimates for growth of Web indices provided in [1], a
Web crawler running in the year 2000 would have to
retrieve Web data at a rate of 45Mbit per second in order to
download the estimated 480GB of pages per day that are
necessary to maintain the index. Looking at the fundamental
limitations of storage technology and communication
networks, it is highly unlikely that Web indices of this size
can be maintained efficiently.

Efficiency:₃ Current search engines add unnecessary traffic
to the already overloaded Internet. While current
approaches are the only alternative for general-purpose
search engines trying to build a comprehensive Web index,
there are many scenarios where it is more efficient to
download and index only selected pages.

Quality₃ of Index: The results of Web searches are
overwhelming and require the user to act as part of the
query processor. Current commercial search engines
maintain Web indices of up to 110 million pages [1] and
easily find several thousands of matches for an average
query. Thus increasing the size of the Web index does not
automatically improve the quality of the search results if it
simply causes the search engine to return twice as many
matches to a query as before.

Since we cannot limit the number of pages on the Web, we
have to find ways to improve the search results in such a
way that can accommodate the rapid growth of the Web.

International Journal of Computer Science & Emerging Technologies (IJCSET) 84

Volume 1 Issue 2, August 2010

Therefore, we expect a new generation of specialized search
engines to emerge in the near future.

2. Literature Survey

According to Junghoo Cho, Hector Garcia-Molina[2], many

search engines often run multiple processes in parallel to

perform the task of parallel crawling , so that download rate

is maximized. In particular, following issues make the study

of a parallel crawler challenging and interesting:

Overlap: When multiple processes run in parallel to
download pages, it is possible that different processes
download the same page multiple times.

Quality: Often, a crawler wants to download “important”

pages first, in order to maximize the “quality” of the

downloaded collection. However, in a parallel crawler, each

process may not be aware of the whole image of the Web

that they have collectively downloaded so far.

Communication bandwidth: In order to prevent overlap, or

to improve the quality of the downloaded pages, crawling

processes need to periodically communicate to coordinate

with each other. However, this communication may grow

significantly as the number of crawling processes increases.

According to Jan Fiedler and Joachim Hammer [3], in the

mobile based web crawling approach, the mobile crawler

move to data source before the actual crawling process is

started. The use of mobile crawlers for information retrieval

requires an architecture which allows us to execute code

(i.e. crawlers) on remote systems.

A critical look at the available literature indicates the
following issues to be addressed towards design of an
efficient crawler.

• The traditional parallel web crawlers download the

web pages on a single machine which causes
bottleneck at the network level.

• The traditional migrating crawlers do not perform
any compression and filtering before transmitting
the web pages to the central machine. Moreover
the migrating web crawlers generally migrates
themselves up to a single level of migration depth
hence they are unable to take benefit of desired
level of migration depth hence reduces the degree
of parallelism.

3. A migrating parallel exponential web

crawling approach

In this work the concept of download first transmits later is

being proposed by using which data can be locally

downloaded, filtered and compressed before transmitting it

to the search engine server. Design and implementation of

parallel migrating web crawler that can grow parallelism to

the desired depth and can download the web pages that can

grow exponentially in size is being proposed. The proposed

parallel migrating crawler also first filters and then

compresses the web pages locally before any transmission

of file to the central machine (search engine). Thus, the

crawler saves the bandwidth of channel and takes the full

advantage of parallel crawling and speedup the process.

Architecture of migrating parallel exponential web crawler:

The architecture of the proposed crawler is shown below in

figure 1.1. Parallel migrating crawler with exponential

growth consists of the two major modules

• Web crawler application

• Crawl machine module

Fig 1.1 Architecture of Parallel migrating crawler with
exponential growth

International Journal of Computer Science & Emerging Technologies (IJCSET) 85

Volume 1 Issue 2, August 2010

In continuation of the figure 1.1 the next level of crawl

machine modules running on n number of machines are

shown in figure 1.2.

CM=Crawl Machine

Fig 1.2 Architecture of Parallel migrating crawler with
exponential growth

Web crawler application (search engine or central
machine):

This is the main module that represents the central machine

or more generally search engine, prompts the user to enter

the seed Urls to be crawl and the IP addresses of the

machine to which the crawling process will migrate. It is a

multithreaded module that creates the required numbers of

thread of crawling processes and controls these processes

on remote machines. This module dynamically updates its

central database of downloaded web pages getting from

different crawling threads running on remote machines and

central Urls list based on current crawling Urls by different

crawling processes running on remote machines.

Each crawling process downloads web pages and stores
them in its local database that is referred to a directory
named crawlerdatabase.The central machine stores
downloaded web pages received from different crawling
processes(crawl machine module) on remote machines into
its central database that is a directory. Each remote machine
crawling process also acts as a central machine generates
the threads of crawling processes and migrate them on
different remote machines and the next level remote
machines running the crawling process also acts as a central
machine and so on. The level of migration increases until
we achieve the satisfactory level of parallelism in crawling
which improves the performance of overall crawling.

This module consists of:

o Counter_wca

o URLlistupdate_wca

o pageDownloader_wca

o ThreadController_wca

Counter_wca

The counter module is used to control the depth of crawling.
This module initializes a counter variable to the desired
number of depth of crawling. Then it sends the counter
value to each next level crawl machines. Each crawl
machine decrements the counter value by one and
forwarded the updated counter value to the next level crawl
machines. The next level crawl machine decrements the
counter value by one and forwards the updated counter
value to the next level crawl machine and so on this process
of counter forwarding continues until the counter value
reaches to zero. As the next level crawl machine find the
counter value zero it stops migrating crawling process to the
next level.

Algorithm Counter_wca

Begin

Initialize a counter variable to

the desired number of depth of

crawling; Send the counter value to

the next level of crawl machines;

End

URLlistupdate_wca

This module is responsible for updating the current
crawling status of each crawl machine visualizing on the
central machine. It also updates the central URL list which
is also visualized in a synchronized manner at the central
machine. As soon as a new URL is found by any crawl
machine it gets the URL and adds the URL to the central
URL list.

Algorithm URLlistupdate_wca

Begin

While (not receiving “done” from the

crawl machine)

{

International Journal of Computer Science & Emerging Technologies (IJCSET) 86

Volume 1 Issue 2, August 2010

Receive URL from any

crawl machine module;

Display crawling status;

Update the corresponding

crawl machine status at

the central machine;

If URL can not resolve then

Display status and do

not add URL in central

URL list;

Else

Add URL to the central URL

List;

}

End

pageDownloader_wca

The crawl machines downloads the web pages from the web

and then filter the web pages based on some user choice and

then compress the filtered web pages in a zip file and finally

transfer the zip file to the central machine. This module is

responsible for download the zip files from the crawl

machines and store the downloaded zip files in the central

local „crawlerdatabase‟ directory with synchronized access.

Algorithm pageDownloader_wca

Begin

While receiving zip files

{

Create zip file with the same

name in crawlerdatabase

directory as transferring Crawl

machine’s (1…n) zip file name;

Receive contents of zip file;

Write contents to the zip file

; Display zip file received ;

Next zip file;

}

End

This module is also implemented as a part of each crawl
machine module.

ThreadController_wca

The thread controller module generates a number of threads

set by the programmer. Each thread is responsible to

migrate the crawling process to the destination machine and

also control the data transfer between the WebCrawler

applications and crawl machines. The thread controller

module also supplies the seed urls to the crawl machines.

The URL list update module and page downloader modules

are the part of the thread controller. The thread controller

module also synchronizes the access to the central

crawlerdatabase directory and the

Algorithm ThreadController_wca

Begin

Create desired number of threads

of crawling Process;

Assign a seed URL and IP address of

the crawl machine to each thread;

Each thread makes connection to the

Appropriate crawl machine;

Migrate the crawling process to

the destination crawl machine;

Synchronize and control the

transmission between the web

crawler application and Crawl

machines using URLlistupdate_wca

and pagedownloader_wca;

End

Crawl Machine Module

Each crawl machine modules are the process that takes the

different seed URLs from the central machine and each

crawl machine crawl the web independently. Each crawl

machine are also capable to act as a central machine that

can connect and supply the seed URLs to other next

crawling level independent crawl machines which in turn

can connect and supply seed URLs to other next crawling

level independent crawl machines and so on, which causes

it can grow the crawling size exponentially. The crawl

machines extract the URLs links from the web pages and

update the local URL list and parallel update the URL list of

International Journal of Computer Science & Emerging Technologies (IJCSET) 87

Volume 1 Issue 2, August 2010

the central machine. Each crawl machine also downloads
the web pages from the web and updates its local page
database.

The crawl machine module consists of the
following components-

o Counter_cm
o ThreadController_cm(Same

as ThreadController_wca)
o pageDownloader_cm
o Filter_cm
o Compress_cm
o Transfer_cm

Counter_cm : This module is similar to Counter_wca.

Algorithm Counter_wca

Begin

Decrement the received counter

value by 1;

If counter value=0 then

Don’t migrate the crawling

process to next level;

Else

Send the counter value to the

next level of crawl machine;

End

pageDownloader_cm

The page downloader module crawls the web starting with

the seed URL supplied by the thread controller module of

the previous level crawl machine or from the central

machine. It uses four data structures vectortosearch,

vectorsearched, vectormatches and a URL List. It stores

each new extracted URL from web pages at the last of

vectortosearch, vectormatches and the URL list. Each time

it takes a URL in FIFO order from the vectortosearch once

the URL is resolved and crawled on the web it deletes the

URL from the vectortosearch and add this URL at the last

of vectorseached.When this module finds URL from the

web pages it checks the vectormatches for the URL, if this

URL is already in vectormatches then the URL is ignored

otherwise it is added to the last of vectotosearch,

vectormaches and URL List.

Algorithm pageDownloader_cm

Begin

While (vectortosearch is not empty or

crawl size reaches to the max. limit)

{

Take the URL from vectortosearch

in FIFO Order;

If URL is not robot safe

then Break;

If URL can not resolve

then Break;

Extract the file on the URL;

Store the file in the

crawlerdatabase; While there

is a hyperlink in the file

{

Extract the URL from the file;

If URL can not resolved then

Write message to the

invoking process thread;

Continue;

If URL is not robot safe

then Write message to the

invoking application

thread;

Continue;

If URL is not in

vectormatches then Add URL

to vectortosearch,

vectormatches, and URL List;

Send URL to the invoking

process thread;

}

Increase crawl size by 1;

}

Send message “done” to the invoking

thread; End

International Journal of Computer Science & Emerging Technologies (IJCSET) 88

Volume 1 Issue 2, August 2010

Filter_cm

This module filters the web pages in the crawlerdatabase

directory based on some user choice. In this work filtering

is done based on file extensions such as .html, .txt

etc.However files can be filtered as per requirements. This

module picks up the filtered files from the crawlerdatabase

and stores in a different directory named “filtered” on the

same machine local disk drive.

Algorithm

filter_cm Begin

Create a directory “filtered” on

the local disk drive;

Read crawlerdatabase directory;

While there is .html file in

crawlerdatabase

Add .html files to the

directory “filtered”;

End

Compress_cm

This module is responsible for compressing all the files in
the filtered directory into a single .zip file. This module
first creates a directory named “zip_n” on local disk drive
and then creates a .zip file into the zip_n directory then
reads all the files in the filtered directory and then adds all
the files into a single .zip file.

Algorithm compress_cm

Begin

Create a directory named zip_n

on local disk drive;

Crate a .zip file in zip_n directory

; While there are files into

“filtered” directory

Add files to .zip file;

End

Transfer_cm

This module transfer the .zip files in the zip_n directory
getting after compression to the previous level crawl
machine‟s zip_n directory or finally to the central
machine‟s crawlerdatabase directory.

Algorithm transfer

Begin

While there are files in

zip_n directory

{

Send zip file to the previous

level crawl machine’s zip_n

directory or at the last

level to the central

machine’s crawlerdatabase

directory; Send contents of

zip files; Next zip file;

}

End

4. Performance

Focus was on comparing the performance of parallel

migrating web crawler with exponential growth with a

standalone conventional crawler that does not use

migration. This standalone crawler will download the pages

locally and does not make any crawling process migration

or transmission of data to any other machine as opposed to

parallel migrating web crawler with exponential growth that

will migrate the crawling process to other machines at some

desired crawling depth and finally all crawling machines

transmits the web pages to the central machine.

Time Measurement

After the execution of the conventional crawler and the
parallel migrating crawler with exponential growth on five
URLs sets, the following observations were made:

International Journal of Computer Science & Emerging Technologies (IJCSET) 89

Volume 1 Issue 2, August 2010

 Crawling Time Comparision

 3000000

 2500000

 2000000

m
s

in

1500000 CC

T
im

e

PMCEG

 1000000

 500000

 0

 1 2 3 4 5

 URL Set

Fig 1.3 Crawling time comparison of Conventional crawler

and parallel migrating web crawler with exponential growth

CC= Conventional crawler

PMCEG= Average crawling time of parallel migrating
crawler with exponential growth

Average crawling time of Conventional crawler=
1439693.60 milliseconds.

Average crawling time of parallel migrating crawler with
exponential growth= 715637.2 milliseconds.

% Benefit in time=100 – ((715637.2/1439693.6)*100)=51

Quality Measurement

 Crawling Quality Comparision

 600

 500

U
R

L
s

400

re
p

e
a
te

d

300 CC

PMCEG

o
f

200

N
O

.

 100

 0

 1 2 3 4 5

 URL Set

Fig 1.4 Crawling quality comparison of Conventional

crawler and parallel migrating web crawler with exponential

growth

Average number of repeated URLs in Conventional
crawler= 372.2

Average number of repeated URLs in parallel migrating
crawler with exponential growth= 74.6

%Benefit in quality=100 – ((74.6/372.2)*100) =80

Network Resource Utilization

 Network Resource Utilization

1200

1000

K
B

800

i n

d a
t

a

600

 CC

PMCEG

C
ra

w
l

e
d

400

200

0

2 3

4 5

 1

 URL Set

Fig 1.5 Network resource utilization comparison of

Conventional crawler and parallel migrating web crawler

with exponential growth

Average Crawled data in Conventional crawler= 810.68 KB

Average Crawled data in parallel migrating crawler with
exponential growth= 136.62 KB

%Benefit in network bandwidth=

100-((136.62/810.68)*100)=83

5. Conclusion

The traditional parallel web crawlers download the web

pages on a single machine, which causes bottleneck at the

network level. The traditional migrating crawlers do not

perform any compression and filtering before transmitting

the web pages to the central machine. Moreover the

Migrating web crawlers generally migrates themselves up to

a single level of migration depth hence they are unable to

take benefit of desired level of migration depth hence

reduces the degree of parallelism. In this work the concept

of download first transmits later is being proposed by using

which data can be locally downloaded, filtered and

compressed before transmitting it to the search engine

server. In this work design and implementation of web

crawler that can grow parallelism to the desired depth and

can download the web pages that can grow exponentially in

size is being proposed. The parallel crawler first filters and

then compresses the downloaded web pages locally before

International Journal of Computer Science & Emerging Technologies (IJCSET) 90

Volume 1 Issue 2, August 2010

Transmitting it to the central machine. Thus the crawlers
save the bandwidth of network and take the full advantage
of parallel crawling for downloading and speedup the
process.

6. Future work

In this work the following future aspects are arising. While

downloading the web pages, we are using socket

programming for file data transmission and dynamic URL

list update it can be improved by using ftp protocol to

reduce the time of file transmission. The socket

programming produces the more number of lines of codes,

the code optimization can be done by using some other

technologies like RMI, JSP or servlet.

We have not provided any security measures in system
connections, crawling process and in transmission of data
among machines. It can be implemented some security
mechanism.

The crawling process does not migrate automatically to the other

machines we have to run the crawling machine module manually

on other machines that will receive the crawling process by the

central machine. This migration can be automatic using some other

techniques like agelet etc.

References

1. Sullivan, D., Search Engine Watch, Mecklermedia, 1998,

http://www.searchenginewatch.com.
2. Junghoo Cho, Hector Garcia-Molina,Parallel

CrawlersWWW2002, May 7–11, 2002, Honolulu, Hawaii,

USA. ACM 1-58113-449-5/02/0005
3. Joachim Hammer and Jan Fiedler ,Using Mobile Crawlers to

Search the Web Efficiently.UF Technical Report, Number
TR98-007, Gainesville, FL, June 1998

4. Douglas E. Comer, “The Internet Book”, Prentice Hall of
India, New Delhi, 2001.

5. Francis Crimmins, “Web Crawler Review”.
6. A.K. Sharma, J.P. Gupta, D. P. Aggarwal, PARCAHYDE:

An Architecture of a Parallel Crawler based on Augmented
Hypertext Documents.

7. A.K.Sharma, Charu Bishnoi, Dimple Juneja, “A Multi-Agent
Framework for agent based focused crawlers”, Proc. Of
International Conference on Emerging Technologies in IT
Industry, pp- 48, ICET-04, Punjab, India, November 2004.

8. Junghoo Cho and Hector Garcia-Molina. Estimating

frequency of change, 2000. Submitted to VLDB 2000,

Research track.
9. [9 Sriram Raghavan Hector GarciaMolina , Crawling the

Hidden Web, Computer Science Department Stanford
University Stanford, CA 94305, USA

10. The Deep Web: Surfacing Hidden
Value.http://www.completeplanet.com/Tutorials/Deep
Web.

11. S. Lawrence and C. L. Giles. Searching the World Wide
Web. Science, 280(5360):98, 1998.

12. http://en.wikipedia.org/wiki/Web_crawler

13. S. Lawrence and C. L. Giles. Accessibility of information on

the web. Nature, 400:107{109, 1999.
14. S. Raghavan and H. Garcia-Molina. Crawling the hidden

web. Technical Report 2000-36, Computer Science
Department, Stanford University, December 2000.

15. Design and Implementation of a High-Performance
Distributed Web Crawler Vladislav Shkapenyuk and Torsten
Suel

16. Distributing crawling techniques – A survey by Vikas
Badgujar, Ashutosh Dixit, A.K.Sharma National conference
on emerging trends in computing and Communicating ETTC-
07.

17. C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and
M. F. Schwartz, “The Harvest Information Discovery and
Access System,” in Proceedings of the Second International
World Wide Web Conference, pp. 763-771, 1994.

AUTHOR’S PROFILE

Mr. Jitendra Kumar Seth received B.Tech. Degree in

Computer Science and Engineering from Uttar Pradesh

Technical University India, in 2004, and M.Tech Degree in

Computer Science and Engineering from Shobhit

University, Meerut, India in 2009. He is currently Assistant

Professor in Dept. of Information Technology at Ajay

Kumar Garg Engg. College, Ghaziabad, India. His research

areas are Search Engine, Web Crawlers, Computer

Network, java and Web programming, Mobile Computing

and Algorithms.

Mr. Ashutosh Dixit is B.Tech, M.Tech in Computer

Science. He is currently working as a senior lecturer in

YMCA, Faridabad, Hariyana.His research area is web

crawler, search engine, computer network and security.

